NNNS Chemistry blog
Prevous: Quadrannulene
Next: CO + NN + HCl = oxamide

All blogs

Metal-free carbon dioxide reduction

14 December 2009 - FLP chemistry

CarbondioxidereductionAshley2009.svg.png Three months ago Stephan et al. demonstrated carbon dioxide sequestration by FLP chemistry (frustrated Lewis pairs) (previous episode here) and this month Ashley et al. have taken it a step further and report carbon dioxide reduction (DOI), chemistry relevant to the methanol economy . Combine TMP, tris(pentafluorophenyl)boron and hydrogen to form the (TMPH)(HB(C6F5)3) salt (1), splitting the H2 molecule. Next add CO2 to a solution of 1 in toluene at 100°C and the formatoborate (HCOOB(C6F5)3)(TMPH) 2 forms quantitatively. Above 100 °C the reactions are no longer reversible. Attack by free BAr3 forms intermediate 3 which can be reduced by another equivalent of (TMPH)(HB(C6F5)3) salt to 4. This acetal is unstable and a TMP proton induces cleavage to intermediate 5 which is reduced again by (TMPH)(HB(C6F5)3) salt to the CH3OBAr3TMPH complex 6. Unable to dissociate into its constituent parts even at 160°C, a proton attacks one of the aromatic rings splitting of C6F5H and forming CH3OBAr2 + TMP. Finally distillation of the reaction product yields methanol in a 17-25% yield.

A catalytic system is in the making.